Blood in Crime Scene Investigation

At the scene of any violent crime, the examining officer will likely find blood and traces of other bodily fluids. These can tell a great deal about what occurred, not only regarding details of how the crime was committed, but also about the people involved.

These days, nearly everybody knows his or her basic blood type, whether it is A, B, AB, or 0, and Rhesus negative or positive. This division of blood into types was first made by Austrian physiologist Karl Landsteiner at the end of the 19th century. In his experiments, he took samples of blood and separated the red cells from the liquid, which is called the serum. He did this by spinning the blood at high speed in a centrifuge. Then he took the serum and added red cells from different people. They responded in two different ways: either the cells mixed with the serum, or they clumped together (clotted), which is called ‘agglutination’.

A number of attempts at blood transfusion had been made in the past, but this observation explained for the first time why so many had failed. If introduced blood was not of exactly the same type as that in the body, it produced clotting, and the patient died. Tests of blood samples to discover whether agglutination will occur is now done before a transfusion is performed.

Red blood cells contain substances called antigens. Antigens help create antibodies which fight infection and disease. Landsteiner thought that his experiment showed the presence of two specific antigens, which he labelled A and B. The discovery of these antigens allowed him to divide human blood into four basic groups:

Group A: antigen A present; antigen B absent
Group B: antigen A absent; antigen B present
Group AB: both antigens A and B present
Group 0: both antigens absent

The specific blood group of a person depends on the genetic inheritance from both parents. Known as ABO typing, it has been used, for example, to help identify the biological father in paternity cases. How common each group is can vary from one national population to another. In the United States, for example, the relative proportions of ABO groups are roughly 39 percent A, 13 percent B, 43 percent 0, and 5 percent AB.

In 1927, Landsteiner found two other antigen types, labelling their occurrence as M, N, and MN. In 1940, working in the United States, he and A.S. Wiener discovered the Rhesus factor, named after the Rhesus monkeys they investigated. Since then, other researchers have introduced more than a dozen further group systems. Different proteins and enzymes associated with specific blood groups have also been identified.

The ability to identify blood type is an excellent tool for uncovering crucial evidence in a forensic investigation. If, for example, a victim’s ABO type is 0, and remains of blood of this type are found to be on clothing of a suspect whose type is A, there is a likely probability that they have come from the victim.

Making use of the many other blood type systems now available, this probability is greatly increased. If blood of type O occurs in 43% of the population, the substance haptoglobin-2 in 36 percent of these, and the enzyme PGM-2 in 5%, then the probability of an individual having these three blood types together is 43 x 36 x 5 = 7,740 in 1,000,000. In other words, around eight people in every thousand will have this specific type of blood. It is still not enough to obtain a conviction on this evidence alone, but it can help to reduce the number of suspects.

In 1925, another important discovery occurred. Around 80 percent of people are ‘secretors’. This means their saliva, urine, perspiration, and semen contain the same substances as their blood, and are able to be used for typing in a similar way. In 1940, two British researchers found that it was possible to distinguish between female and male body cells, especially the white blood cells and those of the lining of the mouth. Blood typing has now become so precise that recently one scientist showed that he could distinguish between the blood of his twin daughters, who were genetically identical, because one had had chicken pox and the other hadn’t.

At the scene of a violent homicidal attack, blood may be present in great quantities. Not only will it be found on the victim, but also on the weapon and the surroundings. Indoors, the floors, walls, and even the ceilings may be splashed. Careful observation of these bloodstains can provide valuable clues about what took place. Bloodstains and splashes are classified into six basic types.

Round drops are found on horizontal surfaces; depending on the height from which they fell, they can spray out into a starlike shape. Splashes of blood are shaped like an exclamation mark; they show that blood has flown through the air and hit a surface at an angle. While a victim is still alive, spurts of blood result from the pumping action of the heart. A major artery can spray the blood a great distance.

Pools of blood form around the body of the bleeding person. If there is more than one pool, he either dragged himself, or was dragged, from one spot to another before dying. Smears are likely also found in this case. Trails are left when a bloody body is moved. There will be drops found if the body was carried, and smears if it was dragged.

If you are looking for a Sydney Criminal Lawyer, contact Go to Court. Our Sydney Criminal Lawyer is here to help. BS14082011SCL

Related Blogs

    Share this:
    Share this page via Email Share this page via Stumble Upon Share this page via Digg this Share this page via Facebook Share this page via Twitter

    Speak Your Mind